Register event
38 event found

Organiser: Intersect Australia 

  • Learn to Program: Python at UNSW Online

    27 - 28 September 2022

    Learn to Program: Python at UNSW Online https://dresa.org.au/events/learn-to-program-python-at-unsw-online-7ae6e87c-4d3e-4850-a04c-d47ef535cc2b Python has deservedly become a popular language for scientific computing. It has all the friendly features and conveniences you'd expect of a modern programming language, and also a rich set of libraries for working with data. We teach using Jupyter notebooks, which allow program code, results, visualisations and documentation to be blended seamlessly. Perfect for sharing insights with others while producing reproducible research. Join us for this live coding workshop where we write programs that produce results, using the researcher-focused training modules from the highly regarded Software Carpentry Foundation. #### You'll learn: - Introduction to the JupyterLab interface for programming - Basic syntax and data types in Python - How to load external data into Python - Creating functions (FUNCTIONS) - Repeating actions and anylsing multiple data sets (LOOPS) - Making choices (IF STATEMENTS - CONDITIONALS) - Ways to visualise data in Python #### Prerequisites: No prior experience with programming needed to attend this course. We strongly recommend attending the Start Coding without Hesitation: Programming Languages Showdown and Thinking like a computer: The Fundamentals of Programming webinars. Recordings of previously delivered webinars can be found [here](https://intersect.org.au/training/webinars/). **For more information, please click [here](https://intersect.org.au/training/course/python101).** 2022-09-27 09:30:00 UTC 2022-09-28 12:30:00 UTC Intersect Australia Australia Australia UNSW training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: Introduction & Linear Regression at UOA Online

    27 - 28 September 2022

    Introduction to Machine Learning using Python: Introduction & Linear Regression at UOA Online https://dresa.org.au/events/introduction-to-machine-learning-using-python-introduction-linear-regression-at-uoa-online Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Understand the difference between supervised and unsupervised Machine Learning. - Understand the fundamentals of Machine Learning. - Comprehensive introduction to Machine Learning models and techniques such as Linear Regression and Model Training. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax and basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python205).** 2022-09-27 09:30:00 UTC 2022-09-28 12:30:00 UTC Intersect Australia Australia Australia UOA training@intersect.org.au [] [] [] host_institution []
  • Data Capture and Surveys with REDCap at LTU Online

    27 September 2022

    Data Capture and Surveys with REDCap at LTU Online https://dresa.org.au/events/data-capture-and-surveys-with-redcap-at-ltu-online-db69a609-d9bc-4cae-b683-f3de30404c0a Would you like to enable secure and reliable data collection forms and manage online surveys? Would your study benefit from web-based data entry? Research Electronic Data Capture (REDCap) might be for you. This course will introduce you to REDCap, a rapidly evolving web tool developed by researchers for researchers. REDCap features a high level of security, and a high degree of customisability for your forms and advanced user access control. It also features free, unlimited survey distribution functionality and a sophisticated export module with support for all standard statistical programs. #### You'll learn: - Get started with REDCap - Create and set up projects - Design forms and surveys using the online designer - Learn how to use branching logic, piping, and calculations - Enter data via forms and distribute surveys - Create, view and export data reports - Add collaborators and set their privileges #### Prerequisites: The course has no prerequisites. **For more information, please click [here](https://intersect.org.au/training/course/redcap101).** 2022-09-27 10:00:00 UTC 2022-09-27 13:00:00 UTC Intersect Australia Australia Australia LTU training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: Classification at UniSA Online

    27 - 28 September 2022

    Introduction to Machine Learning using Python: Classification at UniSA Online https://dresa.org.au/events/introduction-to-machine-learning-using-python-classification-at-unisa-online Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Logistic Regression, Decision Trees and Ensemble Learning. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax, basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries, and basic understanding of Machine Learning and Model Training. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python206).** 2022-09-27 13:00:00 UTC 2022-09-28 16:00:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Data Entry and Processing in SPSS at UC Online

    29 - 30 September 2022

    Data Entry and Processing in SPSS at UC Online https://dresa.org.au/events/data-entry-and-processing-in-spss-at-uc-online-98ea1703-18fb-4677-af88-211451186b8c This hands-on training is designed to familiarize you with the interface and basic data processing functionalities in SPSS. We will examine several “must know” syntax commands that can help streamline data entry and processing. In addition, we will explore how to obtain descriptive statistics in SPSS and perform visualization. This workshop is recommended for researchers and postgraduate students who are new to SPSS or Statistics; or those simply looking for a refresher course before taking a deep dive into using SPSS, either to apply it to their research or to add it to their arsenal of eResearch skills. #### You'll learn: - Navigate the SPSS working environment - Prepare data files and define variables - Enter data in SPSS and Import data from Excel - Perform data screening - Compose SPSS Syntax for data processing - Obtain descriptive statistics, create graphs & assess normality - Manipulate and transform variables #### Prerequisites: In order to participate, attendees must have a licensed copy of SPSS installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. **For more information, please click [here](https://intersect.org.au/training/course/spss101).** 2022-09-29 09:30:00 UTC 2022-09-30 12:30:00 UTC Intersect Australia Australia Australia UC training@intersect.org.au [] [] [] host_institution []
  • Getting Started with NVivo for Mac at Western Sydney: Online

    29 September 2022

    Getting Started with NVivo for Mac at Western Sydney: Online https://dresa.org.au/events/getting-started-with-nvivo-for-mac-at-western-sydney-online-bafaf279-fd15-4e7a-86d1-dd5d382b63b5 Does your research see you working through unstructured and non-numerical data? With the ability to collect, store and analyse different data types all in the one location makes, it's easy to see why NVivo is becoming the tool of choice for many researchers. NVivo allows researchers to simply organise and manage data from a variety of sources including surveys, interviews, articles, video, email, social media and web content, PDFs and images. Coding your data allows you to discover trends and compares themes as they emerge across different sources and data types. Using NVivo memos and visualisations combined with the ability to integrate with popular bibliographic tools you can get your research ready for publication sooner. #### You'll learn: - Create and organise a qualitative research project in NVivo - Import a range of data sources using NVivo's integrated tools - Code and classify your data - Format your data to take advantage of NVivo’s auto-coding ability - Use NVivo to discover new themes and trends in research - Visualise relationships and trends in your data #### Prerequisites: In order to participate, attendees must have a licensed copy of NVivo installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. This course is taught using NVivo 12 Pro for Mac and is not suitable for NVivo for Windows users. **For more information, please click [here](https://intersect.org.au/training/course/nvivo102).** 2022-09-29 09:30:00 UTC 2022-09-29 12:30:00 UTC Intersect Australia Australia Australia WSU training@intersect.org.au [] [] [] host_institution []
  • Data Capture and Surveys with REDCap at LTU Online

    29 September 2022

    Data Capture and Surveys with REDCap at LTU Online https://dresa.org.au/events/data-capture-and-surveys-with-redcap-at-ltu-online-0c5f113e-e32d-4d2f-be91-4624b80e9cc4 Would you like to enable secure and reliable data collection forms and manage online surveys? Would your study benefit from web-based data entry? Research Electronic Data Capture (REDCap) might be for you. This course will introduce you to REDCap, a rapidly evolving web tool developed by researchers for researchers. REDCap features a high level of security, and a high degree of customisability for your forms and advanced user access control. It also features free, unlimited survey distribution functionality and a sophisticated export module with support for all standard statistical programs. #### You'll learn: - Get started with REDCap - Create and set up projects - Design forms and surveys using the online designer - Learn how to use branching logic, piping, and calculations - Enter data via forms and distribute surveys - Create, view and export data reports - Add collaborators and set their privileges #### Prerequisites: The course has no prerequisites. **For more information, please click [here](https://intersect.org.au/training/course/redcap101).** 2022-09-29 10:00:00 UTC 2022-09-29 13:00:00 UTC Intersect Australia Australia Australia LTU training@intersect.org.au [] [] [] host_institution []
  • Getting started with NVivo for Windows at UNE Online

    30 September 2022

    Getting started with NVivo for Windows at UNE Online https://dresa.org.au/events/getting-started-with-nvivo-for-windows-at-une-online Does your research see you working through unstructured and non-numerical data? With the ability to collect, store and analyse different data types all in the one location makes, it's easy to see why NVivo is becoming the tool of choice for many researchers. NVivo allows researchers to simply organise and manage data from a variety of sources including surveys, interviews, articles, video, email, social media and web content, PDFs and images. Coding your data allows you to discover trends and compares themes as they emerge across different sources and data types. Using NVivo memos and visualisations combined with the ability to integrate with popular bibliographic tools you can get your research ready for publication sooner. #### You'll learn: - Create and organise a qualitative research project in NVivo - Import a range of data sources using NVivo's integrated tools - Code and classify your data - Format your data to take advantage of NVivo’s auto-coding ability - Use NVivo to discover new themes and trends in research - Visualise relationships and trends in your data #### Prerequisites: In order to participate, attendees must have a licensed copy of NVivo installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. This course is taught using NVivo 12 Pro for Windows and is not suitable for NVivo for Mac users. **For more information, please click [here](https://intersect.org.au/training/course/nvivo101).** 2022-09-30 09:30:00 UTC 2022-09-30 12:30:00 UTC Intersect Australia Australia Australia UNE training@intersect.org.au [] [] [] host_institution []
  • Unix Shell and Command Line Basics at UTS Online

    30 September 2022

    Unix Shell and Command Line Basics at UTS Online https://dresa.org.au/events/unix-shell-and-command-line-basics-at-uts-online-18e59a6f-4e60-43a6-82f6-d441e8c9e941 The Unix environment is incredibly powerful but quite daunting to the newcomer. Command line confidence unlocks powerful computing resources beyond the desktop, including virtual machines and High Performance Computing. It enables repetitive tasks to be automated. And it comes with a swag of handy tools that can be combined in powerful ways. Getting started is the hardest part, but our helpful instructors are there to demystify Unix as you get to work running programs and writing scripts on the command line. Every attendee is given a dedicated training environment for the duration of the workshop, with all software and data fully loaded and ready to run. We teach this course within a GNU/Linux environment. This is best characterised as a Unix-like environment. We teach how to run commands within the Bash Shell. The skills you'll learn at this course are generally transferable to other Unix environments. #### You'll learn: - Navigate and work with files and directories (folders) - Use a selection of essential tools - Combine data and tools to build a processing workflow - Automate repetitive analysis using the command line #### Prerequisites: The course has no prerequisites. **For more information, please click [here](https://intersect.org.au/training/course/unix101).** 2022-09-30 10:00:00 UTC 2022-09-30 13:00:00 UTC Intersect Australia Australia Australia UTS training@intersect.org.au [] [] [] host_institution []
  • Unix Shell and Command Line Basics at LTU Online

    30 September 2022

    Unix Shell and Command Line Basics at LTU Online https://dresa.org.au/events/unix-shell-and-command-line-basics-at-ltu-online-ddac198e-04d0-42b2-b604-85b8cbbe691a The Unix environment is incredibly powerful but quite daunting to the newcomer. Command line confidence unlocks powerful computing resources beyond the desktop, including virtual machines and High Performance Computing. It enables repetitive tasks to be automated. And it comes with a swag of handy tools that can be combined in powerful ways. Getting started is the hardest part, but our helpful instructors are there to demystify Unix as you get to work running programs and writing scripts on the command line. Every attendee is given a dedicated training environment for the duration of the workshop, with all software and data fully loaded and ready to run. We teach this course within a GNU/Linux environment. This is best characterised as a Unix-like environment. We teach how to run commands within the Bash Shell. The skills you'll learn at this course are generally transferable to other Unix environments. #### You'll learn: - Navigate and work with files and directories (folders) - Use a selection of essential tools - Combine data and tools to build a processing workflow - Automate repetitive analysis using the command line #### Prerequisites: The course has no prerequisites. **For more information, please click [here](https://intersect.org.au/training/course/unix101).** 2022-09-30 10:00:00 UTC 2022-09-30 13:00:00 UTC Intersect Australia Australia Australia LTU training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: Classification at UOA Online

    4 - 5 October 2022

    Introduction to Machine Learning using Python: Classification at UOA Online https://dresa.org.au/events/introduction-to-machine-learning-using-python-classification-at-uoa-online Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Logistic Regression, Decision Trees and Ensemble Learning. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax, basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries, and basic understanding of Machine Learning and Model Training. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python206).** 2022-10-04 09:30:00 UTC 2022-10-05 12:30:00 UTC Intersect Australia Australia Australia UOA training@intersect.org.au [] [] [] host_institution []
  • Longitudinal Trials with REDCap at LTU Online

    4 October 2022

    Longitudinal Trials with REDCap at LTU Online https://dresa.org.au/events/longitudinal-trials-with-redcap-at-ltu-online-fab74bbb-894b-4e69-8157-2498a9138206 REDCap is a powerful and extensible application for managing and running longitiudinal data collection activities. With powerful features such as organising data collections instruments into predefined events, you can shephard your participants through a complex survey at various time points with very little configuration. This course will introduce some of REDCap's more advanced features for running longitudinal studies, and builds on the foundational material taught in REDCAP101 - Managing Data Capture and Surveys with REDCap. #### You'll learn: - Build a longitudinal project - Manage participants throughout multiple events - Configure and use Automated Survey Invitations - Use Smart Variables to add powerful features to your logic - Take advantage of high-granularity permissions for your collaborators - Understand the data structure of a longitudinal project #### Prerequisites: This course requires the participant to have a fairly good basic knowledge of REDCap. To come up to speed, consider taking our [Data Capture and Surveys with REDCap](https://intersect.org.au/training/course/redcap101/) workshop. **For more information, please click [here](https://intersect.org.au/training/course/redcap201).** 2022-10-04 10:00:00 UTC 2022-10-04 13:00:00 UTC Intersect Australia Australia Australia LTU training@intersect.org.au [] [] [] host_institution []
  • Data Entry and Processing in SPSS at UC Online

    4 - 5 October 2022

    Data Entry and Processing in SPSS at UC Online https://dresa.org.au/events/data-entry-and-processing-in-spss-at-uc-online-2ad49709-9422-4151-b2b5-47e7e0ba5976 This hands-on training is designed to familiarize you with the interface and basic data processing functionalities in SPSS. We will examine several “must know” syntax commands that can help streamline data entry and processing. In addition, we will explore how to obtain descriptive statistics in SPSS and perform visualization. This workshop is recommended for researchers and postgraduate students who are new to SPSS or Statistics; or those simply looking for a refresher course before taking a deep dive into using SPSS, either to apply it to their research or to add it to their arsenal of eResearch skills. #### You'll learn: - Navigate the SPSS working environment - Prepare data files and define variables - Enter data in SPSS and Import data from Excel - Perform data screening - Compose SPSS Syntax for data processing - Obtain descriptive statistics, create graphs & assess normality - Manipulate and transform variables #### Prerequisites: In order to participate, attendees must have a licensed copy of SPSS installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. **For more information, please click [here](https://intersect.org.au/training/course/spss101).** 2022-10-04 13:30:00 UTC 2022-10-05 16:30:00 UTC Intersect Australia Australia Australia UC training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using R: Introduction & Linear Regression at UniSA Online

    6 - 7 October 2022

    Introduction to Machine Learning using R: Introduction & Linear Regression at UniSA Online https://dresa.org.au/events/introduction-to-machine-learning-using-r-introduction-linear-regression-at-unisa-online Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the R programming language and its scientific computing packages. #### You'll learn: - Understand the difference between supervised and unsupervised Machine Learning. - Understand the fundamentals of Machine Learning. - Comprehensive introduction to Machine Learning models and techniques such as Linear Regression and Model Training. - Understand the Machine Learning modelling workflows. - Use R and and its relevant packages to process real datasets, train and apply Machine Learning models #### Prerequisites: - Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation in R](https://intersect.org.au/training/course/r201/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/)needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of R syntax and basic programming concepts and familiarity with dplyr, tidyr and ggplot2 packages. - Maths knowledge is not required. There are only a few Math formula that you are going to see in this course, however references to Mathematics required for learning about Machine Learning will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using R workshops: - Introduction to Machine Learning using R: Introduction & Linear Regression - Introduction to Machine Learning using R: Classification - Introduction to Machine Learning using R: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/r205).** 2022-10-06 09:30:00 UTC 2022-10-07 12:30:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Excel for Researchers at Deakin Online

    6 - 7 October 2022

    Excel for Researchers at Deakin Online https://dresa.org.au/events/excel-for-researchers-at-deakin-online-bab9bfd3-9f50-4b1a-bd93-612966314ddd Data rarely comes in the form you require. Often it is messy. Sometimes it is incomplete. And sometimes there's too much of it. Frequently, it has errors. We'll use one of the most widespread data wrangling tools, Microsoft Excel, to import, sort, filter, copy, protect, transform, summarise, merge, and visualise research data. While aimed at novice Excel users, most attendees will walk away with new tricks to work more efficiently with their research data. #### You'll learn: - 'Clean up’ messy research data - Organise, format and name your data - Interpret your data (SORTING, FILTERING, CONDITIONAL FORMATTING) - Perform calculations on your data using functions (MAX, MIN, AVERAGE) - Extract significant findings from your data (PIVOT TABLE, VLOOKUP) - Manipulate your data (convert data format, work with DATES and TIMES) - Create graphs and charts to visualise your data (CHARTS) - Handy tips to speed up your work #### Prerequisites: In order to participate, attendees must have a licensed copy of Microsoft Excel installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. **For more information, please click [here](https://intersect.org.au/training/course/excel101).** 2022-10-06 13:00:00 UTC 2022-10-07 16:00:00 UTC Intersect Australia Australia Australia Deakin training@intersect.org.au [] [] [] host_institution []
  • Getting started with NVivo for Windows at UTS Online

    6 October 2022

    Getting started with NVivo for Windows at UTS Online https://dresa.org.au/events/getting-started-with-nvivo-for-windows-at-uts-online-b28faf2f-9fd5-4807-b81e-314757189cfc Does your research see you working through unstructured and non-numerical data? With the ability to collect, store and analyse different data types all in the one location makes, it's easy to see why NVivo is becoming the tool of choice for many researchers. NVivo allows researchers to simply organise and manage data from a variety of sources including surveys, interviews, articles, video, email, social media and web content, PDFs and images. Coding your data allows you to discover trends and compares themes as they emerge across different sources and data types. Using NVivo memos and visualisations combined with the ability to integrate with popular bibliographic tools you can get your research ready for publication sooner. #### You'll learn: - Create and organise a qualitative research project in NVivo - Import a range of data sources using NVivo's integrated tools - Code and classify your data - Format your data to take advantage of NVivo’s auto-coding ability - Use NVivo to discover new themes and trends in research - Visualise relationships and trends in your data #### Prerequisites: In order to participate, attendees must have a licensed copy of NVivo installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. This course is taught using NVivo 12 Pro for Windows and is not suitable for NVivo for Mac users. **For more information, please click [here](https://intersect.org.au/training/course/nvivo101).** 2022-10-06 13:30:00 UTC 2022-10-06 16:30:00 UTC Intersect Australia Australia Australia UTS training@intersect.org.au [] [] [] host_institution []
  • Version Control with Git at UC Online

    6 October 2022

    Version Control with Git at UC Online https://dresa.org.au/events/version-control-with-git-at-uc-online Have you mistakenly overwritten programs or data and want to learn techniques to avoid repeating the loss? Version control systems are one of the most powerful tools available for avoiding data loss and enabling reproducible research. While the learning curve can be steep, our trainers are there to answer all your questions while you gain hands on experience in using Git, one of the most popular version control systems available. Join us for this workshop where we cover the fundamentals of version control using the researcher-focused training modules from the highly regarded Software Carpentry Foundation. #### You'll learn: - keep versions of data, scripts, and other files - examine commit logs to find which files were changed when - restore earlier versions of files - compare changes between versions of a file - push your versioned files to a remote location, for backup and to facilitate collaboration #### Prerequisites: The course has no prerequisites. **For more information, please click [here](https://intersect.org.au/training/course/git101).** 2022-10-06 13:30:00 UTC 2022-10-06 16:30:00 UTC Intersect Australia Australia Australia UC training@intersect.org.au [] [] [] host_institution []
  • Getting started with NVivo for Windows at Western Sydney: Online

    7 October 2022

    Getting started with NVivo for Windows at Western Sydney: Online https://dresa.org.au/events/getting-started-with-nvivo-for-windows-at-western-sydney-online-553d211b-e146-4d09-9cd0-e8deed4614fb Does your research see you working through unstructured and non-numerical data? With the ability to collect, store and analyse different data types all in the one location makes, it's easy to see why NVivo is becoming the tool of choice for many researchers. NVivo allows researchers to simply organise and manage data from a variety of sources including surveys, interviews, articles, video, email, social media and web content, PDFs and images. Coding your data allows you to discover trends and compares themes as they emerge across different sources and data types. Using NVivo memos and visualisations combined with the ability to integrate with popular bibliographic tools you can get your research ready for publication sooner. #### You'll learn: - Create and organise a qualitative research project in NVivo - Import a range of data sources using NVivo's integrated tools - Code and classify your data - Format your data to take advantage of NVivo’s auto-coding ability - Use NVivo to discover new themes and trends in research - Visualise relationships and trends in your data #### Prerequisites: In order to participate, attendees must have a licensed copy of NVivo installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. This course is taught using NVivo 12 Pro for Windows and is not suitable for NVivo for Mac users. **For more information, please click [here](https://intersect.org.au/training/course/nvivo101).** 2022-10-07 09:30:00 UTC 2022-10-07 12:30:00 UTC Intersect Australia Australia Australia WSU training@intersect.org.au [] [] [] host_institution []
  • Getting started with NVivo for Windows at UTS Online

    7 October 2022

    Getting started with NVivo for Windows at UTS Online https://dresa.org.au/events/getting-started-with-nvivo-for-windows-at-uts-online-3b35237e-2329-460c-b21d-edb3e4005185 Does your research see you working through unstructured and non-numerical data? With the ability to collect, store and analyse different data types all in the one location makes, it's easy to see why NVivo is becoming the tool of choice for many researchers. NVivo allows researchers to simply organise and manage data from a variety of sources including surveys, interviews, articles, video, email, social media and web content, PDFs and images. Coding your data allows you to discover trends and compares themes as they emerge across different sources and data types. Using NVivo memos and visualisations combined with the ability to integrate with popular bibliographic tools you can get your research ready for publication sooner. #### You'll learn: - Create and organise a qualitative research project in NVivo - Import a range of data sources using NVivo's integrated tools - Code and classify your data - Format your data to take advantage of NVivo’s auto-coding ability - Use NVivo to discover new themes and trends in research - Visualise relationships and trends in your data #### Prerequisites: In order to participate, attendees must have a licensed copy of NVivo installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. This course is taught using NVivo 12 Pro for Windows and is not suitable for NVivo for Mac users. **For more information, please click [here](https://intersect.org.au/training/course/nvivo101).** 2022-10-07 13:30:00 UTC 2022-10-07 16:30:00 UTC Intersect Australia Australia Australia UTS training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: SVM & Unsupervised Learning at UOA Online

    11 October 2022

    Introduction to Machine Learning using Python: SVM & Unsupervised Learning at UOA Online https://dresa.org.au/events/introduction-to-machine-learning-using-python-svm-unsupervised-learning-at-uoa-online Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Support Vector Machine, K-Nearest Neighbor and Dimensionality Reduction. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax, basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries, and basic understanding of Machine Learning and Model Training. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python207).** 2022-10-11 09:30:00 UTC 2022-10-11 12:30:00 UTC Intersect Australia Australia Australia UOA training@intersect.org.au [] [] [] host_institution []
  • Excel for Researchers at UNE Online

    11 October 2022

    Excel for Researchers at UNE Online https://dresa.org.au/events/excel-for-researchers-at-une-online Data rarely comes in the form you require. Often it is messy. Sometimes it is incomplete. And sometimes there's too much of it. Frequently, it has errors. We'll use one of the most widespread data wrangling tools, Microsoft Excel, to import, sort, filter, copy, protect, transform, summarise, merge, and visualise research data. While aimed at novice Excel users, most attendees will walk away with new tricks to work more efficiently with their research data. #### You'll learn: - 'Clean up’ messy research data - Organise, format and name your data - Interpret your data (SORTING, FILTERING, CONDITIONAL FORMATTING) - Perform calculations on your data using functions (MAX, MIN, AVERAGE) - Extract significant findings from your data (PIVOT TABLE, VLOOKUP) - Manipulate your data (convert data format, work with DATES and TIMES) - Create graphs and charts to visualise your data (CHARTS) - Handy tips to speed up your work #### Prerequisites: In order to participate, attendees must have a licensed copy of Microsoft Excel installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. **For more information, please click [here](https://intersect.org.au/training/course/excel101).** 2022-10-11 09:30:00 UTC 2022-10-11 12:30:00 UTC Intersect Australia Australia Australia UNE training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: Introduction & Linear Regression at UniSA Online

    11 - 12 October 2022

    Introduction to Machine Learning using Python: Introduction & Linear Regression at UniSA Online https://dresa.org.au/events/introduction-to-machine-learning-using-python-introduction-linear-regression-at-unisa-online-fbdbdb9f-7f87-4cef-94dd-ed271edf03b7 Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Understand the difference between supervised and unsupervised Machine Learning. - Understand the fundamentals of Machine Learning. - Comprehensive introduction to Machine Learning models and techniques such as Linear Regression and Model Training. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax and basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python205).** 2022-10-11 13:00:00 UTC 2022-10-12 16:00:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Excel for Researchers at UNE Online

    12 October 2022

    Excel for Researchers at UNE Online https://dresa.org.au/events/excel-for-researchers-at-une-online-c1d0c270-e1dd-4b1a-b283-8a4a1dadbfd0 Data rarely comes in the form you require. Often it is messy. Sometimes it is incomplete. And sometimes there's too much of it. Frequently, it has errors. We'll use one of the most widespread data wrangling tools, Microsoft Excel, to import, sort, filter, copy, protect, transform, summarise, merge, and visualise research data. While aimed at novice Excel users, most attendees will walk away with new tricks to work more efficiently with their research data. #### You'll learn: - 'Clean up’ messy research data - Organise, format and name your data - Interpret your data (SORTING, FILTERING, CONDITIONAL FORMATTING) - Perform calculations on your data using functions (MAX, MIN, AVERAGE) - Extract significant findings from your data (PIVOT TABLE, VLOOKUP) - Manipulate your data (convert data format, work with DATES and TIMES) - Create graphs and charts to visualise your data (CHARTS) - Handy tips to speed up your work #### Prerequisites: In order to participate, attendees must have a licensed copy of Microsoft Excel installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. **For more information, please click [here](https://intersect.org.au/training/course/excel101).** 2022-10-12 09:30:00 UTC 2022-10-12 12:30:00 UTC Intersect Australia Australia Australia UNE training@intersect.org.au [] [] [] host_institution []
  • Collecting Web Data at UC Online

    12 - 13 October 2022

    Collecting Web Data at UC Online https://dresa.org.au/events/collecting-web-data-at-uc-online-1abf7b55-140d-4eea-a38c-22d682f9ebc5 Web scraping is a technique for extracting information from websites. This can be done manually but it is usually faster, more efficient and less error-prone if it can be automated. Web scraping allows you to convert non-tabular or poorly structured data into a usable, structured format, such as a .csv file or spreadsheet. But scraping is about more than just acquiring data: it can help you track changes to data online, and help you archive data. In short, it's a skill worth learning. So join us for this web scraping workshop to learn web scraping, using the researcher-focused training modules from the highly regarded Software Carpentry Foundation. #### You'll learn: - The concept of structured data - The use of XPath queries on HTML document - How to scrape data using browser extensions - How to scrape using Python and Scrapy - How to automate the scraping of multiple web pages #### Prerequisites: A good knowledge of the basic concepts and techniques in Python. Consider taking our [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Python for Research](https://intersect.org.au/training/course/python110/) courses to come up to speed beforehand. **For more information, please click [here](https://intersect.org.au/training/course/webdata201).** 2022-10-12 09:30:00 UTC 2022-10-13 16:30:00 UTC Intersect Australia Australia Australia UC training@intersect.org.au [] [] [] host_institution []
  • Excel for Researchers at LTU Online

    12 - 13 October 2022

    Excel for Researchers at LTU Online https://dresa.org.au/events/excel-for-researchers-at-ltu-online-2a214127-b203-4bfb-940d-09b19a3b34b6 Data rarely comes in the form you require. Often it is messy. Sometimes it is incomplete. And sometimes there's too much of it. Frequently, it has errors. We'll use one of the most widespread data wrangling tools, Microsoft Excel, to import, sort, filter, copy, protect, transform, summarise, merge, and visualise research data. While aimed at novice Excel users, most attendees will walk away with new tricks to work more efficiently with their research data. #### You'll learn: - 'Clean up’ messy research data - Organise, format and name your data - Interpret your data (SORTING, FILTERING, CONDITIONAL FORMATTING) - Perform calculations on your data using functions (MAX, MIN, AVERAGE) - Extract significant findings from your data (PIVOT TABLE, VLOOKUP) - Manipulate your data (convert data format, work with DATES and TIMES) - Create graphs and charts to visualise your data (CHARTS) - Handy tips to speed up your work #### Prerequisites: In order to participate, attendees must have a licensed copy of Microsoft Excel installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. **For more information, please click [here](https://intersect.org.au/training/course/excel101).** 2022-10-12 09:30:00 UTC 2022-10-13 12:30:00 UTC Intersect Australia Australia Australia LTU training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using R: Classification at UniSA Online

    13 - 14 October 2022

    Introduction to Machine Learning using R: Classification at UniSA Online https://dresa.org.au/events/introduction-to-machine-learning-using-r-classification-at-unisa-online Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the R programming language and its scientific computing packages. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Logistic Regression, Decision Trees and Ensemble Learning. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use R and its relevant packages to process real datasets, train and apply Machine Learning models #### Prerequisites: - Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation in R](https://intersect.org.au/training/course/r201/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/)needed to attend this course. If you already have experience with programming, please check the topics covered in courses above and [Introduction to ML using R: Introduction & Linear Regression](https://intersect.org.au/training/course/r205/) to ensure that you are familiar with the knowledge needed for this course, such as good understanding of R syntax and basic programming concepts, familiarity with dplyr, tidyr and ggplot2 packages, and basic understanding of Machine Learning and Model Training. - Maths knowledge is not required. There are only a few Math formula that you are going to see in this course, however references to Mathematics required for learning about Machine Learning will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using R workshops: - Introduction to Machine Learning using R: Introduction & Linear Regression - Introduction to Machine Learning using R: Classification - Introduction to Machine Learning using R: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/r206).** 2022-10-13 09:30:00 UTC 2022-10-14 09:30:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: SVM & Unsupervised Learning at UOA Online

    13 October 2022

    Introduction to Machine Learning using Python: SVM & Unsupervised Learning at UOA Online https://dresa.org.au/events/introduction-to-machine-learning-using-python-svm-unsupervised-learning-at-uoa-online-c4738fe2-2523-4a1f-baae-cdfb09e36ac2 Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Support Vector Machine, K-Nearest Neighbor and Dimensionality Reduction. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax, basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries, and basic understanding of Machine Learning and Model Training. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python207).** 2022-10-13 09:30:00 UTC 2022-10-13 12:30:00 UTC Intersect Australia Australia Australia UOA training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: Classification at UniSA Online

    18 - 19 October 2022

    Introduction to Machine Learning using Python: Classification at UniSA Online https://dresa.org.au/events/introduction-to-machine-learning-using-python-classification-at-unisa-online-27cb5a67-71b5-46bd-beaa-a132c09400db Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Logistic Regression, Decision Trees and Ensemble Learning. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax, basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries, and basic understanding of Machine Learning and Model Training. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python206).** 2022-10-18 09:30:00 UTC 2022-10-19 12:30:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Learn to Program: R at LTU Online

    25 - 26 October 2022

    Learn to Program: R at LTU Online https://dresa.org.au/events/learn-to-program-r-at-ltu-online-beb66166-f464-46cc-b6a2-c2e9d886b32f R is quickly gaining popularity as a programming language of choice for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio development environment and the Shiny web application framework. But getting started with R can be challenging, particularly if you've never programmed before. That's where this introductory course comes in. We teach using RStudio, which allows program code, results, visualisations and documentation to be blended seamlessly. Join us for a live coding workshop where we write programs that produce results, using the researcher-focused training modules from the highly regarded Software Carpentry Foundation. #### You'll learn: - Introduction to the RStudio interface for programming - Basic syntax and data types in R - How to load external data into R - Creating functions (FUNCTIONS) - Repeating actions and analysing multiple data sets (LOOPS) - Making choices (IF STATEMENTS - CONDITIONALS) - Ways to visualise data in R #### Prerequisites: No prior experience with programming needed to attend this course. We strongly recommend attending the Start Coding without Hesitation: Programming Languages Showdown and Thinking like a computer: The Fundamentals of Programming webinars. Recordings of previously delivered webinars can be found [here](https://intersect.org.au/training/webinars/). **For more information, please click [here](https://intersect.org.au/training/course/r101).** 2022-10-25 09:30:00 UTC 2022-10-26 12:30:00 UTC Intersect Australia Australia Australia LTU training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using R: Introduction & Linear Regression at Western Sydney: Online

    25 - 26 October 2022

    Introduction to Machine Learning using R: Introduction & Linear Regression at Western Sydney: Online https://dresa.org.au/events/introduction-to-machine-learning-using-r-introduction-linear-regression-at-western-sydney-online Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the R programming language and its scientific computing packages. #### You'll learn: - Understand the difference between supervised and unsupervised Machine Learning. - Understand the fundamentals of Machine Learning. - Comprehensive introduction to Machine Learning models and techniques such as Linear Regression and Model Training. - Understand the Machine Learning modelling workflows. - Use R and and its relevant packages to process real datasets, train and apply Machine Learning models #### Prerequisites: - Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation in R](https://intersect.org.au/training/course/r201/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/)needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of R syntax and basic programming concepts and familiarity with dplyr, tidyr and ggplot2 packages. - Maths knowledge is not required. There are only a few Math formula that you are going to see in this course, however references to Mathematics required for learning about Machine Learning will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using R workshops: - Introduction to Machine Learning using R: Introduction & Linear Regression - Introduction to Machine Learning using R: Classification - Introduction to Machine Learning using R: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/r205).** 2022-10-25 09:30:00 UTC 2022-10-26 12:30:00 UTC Intersect Australia Australia Australia WSU training@intersect.org.au [] [] [] host_institution []
  • Learn to Program: Python at UNSW Online

    27 - 28 September 2022

    Learn to Program: Python at UNSW Online https://dresa.org.au/events/learn-to-program-python-at-unsw-online-7ae6e87c-4d3e-4850-a04c-d47ef535cc2b Python has deservedly become a popular language for scientific computing. It has all the friendly features and conveniences you'd expect of a modern programming language, and also a rich set of libraries for working with data. We teach using Jupyter notebooks, which allow program code, results, visualisations and documentation to be blended seamlessly. Perfect for sharing insights with others while producing reproducible research. Join us for this live coding workshop where we write programs that produce results, using the researcher-focused training modules from the highly regarded Software Carpentry Foundation. #### You'll learn: - Introduction to the JupyterLab interface for programming - Basic syntax and data types in Python - How to load external data into Python - Creating functions (FUNCTIONS) - Repeating actions and anylsing multiple data sets (LOOPS) - Making choices (IF STATEMENTS - CONDITIONALS) - Ways to visualise data in Python #### Prerequisites: No prior experience with programming needed to attend this course. We strongly recommend attending the Start Coding without Hesitation: Programming Languages Showdown and Thinking like a computer: The Fundamentals of Programming webinars. Recordings of previously delivered webinars can be found [here](https://intersect.org.au/training/webinars/). **For more information, please click [here](https://intersect.org.au/training/course/python101).** 2022-09-27 09:30:00 UTC 2022-09-28 12:30:00 UTC Intersect Australia Australia Australia UNSW training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: Introduction & Linear Regression at UOA Online

    27 - 28 September 2022

    Introduction to Machine Learning using Python: Introduction & Linear Regression at UOA Online https://dresa.org.au/events/introduction-to-machine-learning-using-python-introduction-linear-regression-at-uoa-online Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Understand the difference between supervised and unsupervised Machine Learning. - Understand the fundamentals of Machine Learning. - Comprehensive introduction to Machine Learning models and techniques such as Linear Regression and Model Training. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax and basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python205).** 2022-09-27 09:30:00 UTC 2022-09-28 12:30:00 UTC Intersect Australia Australia Australia UOA training@intersect.org.au [] [] [] host_institution []
  • Data Capture and Surveys with REDCap at LTU Online

    27 September 2022

    Data Capture and Surveys with REDCap at LTU Online https://dresa.org.au/events/data-capture-and-surveys-with-redcap-at-ltu-online-db69a609-d9bc-4cae-b683-f3de30404c0a Would you like to enable secure and reliable data collection forms and manage online surveys? Would your study benefit from web-based data entry? Research Electronic Data Capture (REDCap) might be for you. This course will introduce you to REDCap, a rapidly evolving web tool developed by researchers for researchers. REDCap features a high level of security, and a high degree of customisability for your forms and advanced user access control. It also features free, unlimited survey distribution functionality and a sophisticated export module with support for all standard statistical programs. #### You'll learn: - Get started with REDCap - Create and set up projects - Design forms and surveys using the online designer - Learn how to use branching logic, piping, and calculations - Enter data via forms and distribute surveys - Create, view and export data reports - Add collaborators and set their privileges #### Prerequisites: The course has no prerequisites. **For more information, please click [here](https://intersect.org.au/training/course/redcap101).** 2022-09-27 10:00:00 UTC 2022-09-27 13:00:00 UTC Intersect Australia Australia Australia LTU training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: Classification at UniSA Online

    27 - 28 September 2022

    Introduction to Machine Learning using Python: Classification at UniSA Online https://dresa.org.au/events/introduction-to-machine-learning-using-python-classification-at-unisa-online Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Logistic Regression, Decision Trees and Ensemble Learning. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax, basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries, and basic understanding of Machine Learning and Model Training. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python206).** 2022-09-27 13:00:00 UTC 2022-09-28 16:00:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Data Entry and Processing in SPSS at UC Online

    29 - 30 September 2022

    Data Entry and Processing in SPSS at UC Online https://dresa.org.au/events/data-entry-and-processing-in-spss-at-uc-online-98ea1703-18fb-4677-af88-211451186b8c This hands-on training is designed to familiarize you with the interface and basic data processing functionalities in SPSS. We will examine several “must know” syntax commands that can help streamline data entry and processing. In addition, we will explore how to obtain descriptive statistics in SPSS and perform visualization. This workshop is recommended for researchers and postgraduate students who are new to SPSS or Statistics; or those simply looking for a refresher course before taking a deep dive into using SPSS, either to apply it to their research or to add it to their arsenal of eResearch skills. #### You'll learn: - Navigate the SPSS working environment - Prepare data files and define variables - Enter data in SPSS and Import data from Excel - Perform data screening - Compose SPSS Syntax for data processing - Obtain descriptive statistics, create graphs & assess normality - Manipulate and transform variables #### Prerequisites: In order to participate, attendees must have a licensed copy of SPSS installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. **For more information, please click [here](https://intersect.org.au/training/course/spss101).** 2022-09-29 09:30:00 UTC 2022-09-30 12:30:00 UTC Intersect Australia Australia Australia UC training@intersect.org.au [] [] [] host_institution []
  • Getting Started with NVivo for Mac at Western Sydney: Online

    29 September 2022

    Getting Started with NVivo for Mac at Western Sydney: Online https://dresa.org.au/events/getting-started-with-nvivo-for-mac-at-western-sydney-online-bafaf279-fd15-4e7a-86d1-dd5d382b63b5 Does your research see you working through unstructured and non-numerical data? With the ability to collect, store and analyse different data types all in the one location makes, it's easy to see why NVivo is becoming the tool of choice for many researchers. NVivo allows researchers to simply organise and manage data from a variety of sources including surveys, interviews, articles, video, email, social media and web content, PDFs and images. Coding your data allows you to discover trends and compares themes as they emerge across different sources and data types. Using NVivo memos and visualisations combined with the ability to integrate with popular bibliographic tools you can get your research ready for publication sooner. #### You'll learn: - Create and organise a qualitative research project in NVivo - Import a range of data sources using NVivo's integrated tools - Code and classify your data - Format your data to take advantage of NVivo’s auto-coding ability - Use NVivo to discover new themes and trends in research - Visualise relationships and trends in your data #### Prerequisites: In order to participate, attendees must have a licensed copy of NVivo installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. This course is taught using NVivo 12 Pro for Mac and is not suitable for NVivo for Windows users. **For more information, please click [here](https://intersect.org.au/training/course/nvivo102).** 2022-09-29 09:30:00 UTC 2022-09-29 12:30:00 UTC Intersect Australia Australia Australia WSU training@intersect.org.au [] [] [] host_institution []
  • Data Capture and Surveys with REDCap at LTU Online

    29 September 2022

    Data Capture and Surveys with REDCap at LTU Online https://dresa.org.au/events/data-capture-and-surveys-with-redcap-at-ltu-online-0c5f113e-e32d-4d2f-be91-4624b80e9cc4 Would you like to enable secure and reliable data collection forms and manage online surveys? Would your study benefit from web-based data entry? Research Electronic Data Capture (REDCap) might be for you. This course will introduce you to REDCap, a rapidly evolving web tool developed by researchers for researchers. REDCap features a high level of security, and a high degree of customisability for your forms and advanced user access control. It also features free, unlimited survey distribution functionality and a sophisticated export module with support for all standard statistical programs. #### You'll learn: - Get started with REDCap - Create and set up projects - Design forms and surveys using the online designer - Learn how to use branching logic, piping, and calculations - Enter data via forms and distribute surveys - Create, view and export data reports - Add collaborators and set their privileges #### Prerequisites: The course has no prerequisites. **For more information, please click [here](https://intersect.org.au/training/course/redcap101).** 2022-09-29 10:00:00 UTC 2022-09-29 13:00:00 UTC Intersect Australia Australia Australia LTU training@intersect.org.au [] [] [] host_institution []
  • Getting started with NVivo for Windows at UNE Online

    30 September 2022

    Getting started with NVivo for Windows at UNE Online https://dresa.org.au/events/getting-started-with-nvivo-for-windows-at-une-online Does your research see you working through unstructured and non-numerical data? With the ability to collect, store and analyse different data types all in the one location makes, it's easy to see why NVivo is becoming the tool of choice for many researchers. NVivo allows researchers to simply organise and manage data from a variety of sources including surveys, interviews, articles, video, email, social media and web content, PDFs and images. Coding your data allows you to discover trends and compares themes as they emerge across different sources and data types. Using NVivo memos and visualisations combined with the ability to integrate with popular bibliographic tools you can get your research ready for publication sooner. #### You'll learn: - Create and organise a qualitative research project in NVivo - Import a range of data sources using NVivo's integrated tools - Code and classify your data - Format your data to take advantage of NVivo’s auto-coding ability - Use NVivo to discover new themes and trends in research - Visualise relationships and trends in your data #### Prerequisites: In order to participate, attendees must have a licensed copy of NVivo installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. This course is taught using NVivo 12 Pro for Windows and is not suitable for NVivo for Mac users. **For more information, please click [here](https://intersect.org.au/training/course/nvivo101).** 2022-09-30 09:30:00 UTC 2022-09-30 12:30:00 UTC Intersect Australia Australia Australia UNE training@intersect.org.au [] [] [] host_institution []
  • Unix Shell and Command Line Basics at UTS Online

    30 September 2022

    Unix Shell and Command Line Basics at UTS Online https://dresa.org.au/events/unix-shell-and-command-line-basics-at-uts-online-18e59a6f-4e60-43a6-82f6-d441e8c9e941 The Unix environment is incredibly powerful but quite daunting to the newcomer. Command line confidence unlocks powerful computing resources beyond the desktop, including virtual machines and High Performance Computing. It enables repetitive tasks to be automated. And it comes with a swag of handy tools that can be combined in powerful ways. Getting started is the hardest part, but our helpful instructors are there to demystify Unix as you get to work running programs and writing scripts on the command line. Every attendee is given a dedicated training environment for the duration of the workshop, with all software and data fully loaded and ready to run. We teach this course within a GNU/Linux environment. This is best characterised as a Unix-like environment. We teach how to run commands within the Bash Shell. The skills you'll learn at this course are generally transferable to other Unix environments. #### You'll learn: - Navigate and work with files and directories (folders) - Use a selection of essential tools - Combine data and tools to build a processing workflow - Automate repetitive analysis using the command line #### Prerequisites: The course has no prerequisites. **For more information, please click [here](https://intersect.org.au/training/course/unix101).** 2022-09-30 10:00:00 UTC 2022-09-30 13:00:00 UTC Intersect Australia Australia Australia UTS training@intersect.org.au [] [] [] host_institution []
  • Unix Shell and Command Line Basics at LTU Online

    30 September 2022

    Unix Shell and Command Line Basics at LTU Online https://dresa.org.au/events/unix-shell-and-command-line-basics-at-ltu-online-ddac198e-04d0-42b2-b604-85b8cbbe691a The Unix environment is incredibly powerful but quite daunting to the newcomer. Command line confidence unlocks powerful computing resources beyond the desktop, including virtual machines and High Performance Computing. It enables repetitive tasks to be automated. And it comes with a swag of handy tools that can be combined in powerful ways. Getting started is the hardest part, but our helpful instructors are there to demystify Unix as you get to work running programs and writing scripts on the command line. Every attendee is given a dedicated training environment for the duration of the workshop, with all software and data fully loaded and ready to run. We teach this course within a GNU/Linux environment. This is best characterised as a Unix-like environment. We teach how to run commands within the Bash Shell. The skills you'll learn at this course are generally transferable to other Unix environments. #### You'll learn: - Navigate and work with files and directories (folders) - Use a selection of essential tools - Combine data and tools to build a processing workflow - Automate repetitive analysis using the command line #### Prerequisites: The course has no prerequisites. **For more information, please click [here](https://intersect.org.au/training/course/unix101).** 2022-09-30 10:00:00 UTC 2022-09-30 13:00:00 UTC Intersect Australia Australia Australia LTU training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: Classification at UOA Online

    4 - 5 October 2022

    Introduction to Machine Learning using Python: Classification at UOA Online https://dresa.org.au/events/introduction-to-machine-learning-using-python-classification-at-uoa-online Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Logistic Regression, Decision Trees and Ensemble Learning. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax, basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries, and basic understanding of Machine Learning and Model Training. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python206).** 2022-10-04 09:30:00 UTC 2022-10-05 12:30:00 UTC Intersect Australia Australia Australia UOA training@intersect.org.au [] [] [] host_institution []
  • Longitudinal Trials with REDCap at LTU Online

    4 October 2022

    Longitudinal Trials with REDCap at LTU Online https://dresa.org.au/events/longitudinal-trials-with-redcap-at-ltu-online-fab74bbb-894b-4e69-8157-2498a9138206 REDCap is a powerful and extensible application for managing and running longitiudinal data collection activities. With powerful features such as organising data collections instruments into predefined events, you can shephard your participants through a complex survey at various time points with very little configuration. This course will introduce some of REDCap's more advanced features for running longitudinal studies, and builds on the foundational material taught in REDCAP101 - Managing Data Capture and Surveys with REDCap. #### You'll learn: - Build a longitudinal project - Manage participants throughout multiple events - Configure and use Automated Survey Invitations - Use Smart Variables to add powerful features to your logic - Take advantage of high-granularity permissions for your collaborators - Understand the data structure of a longitudinal project #### Prerequisites: This course requires the participant to have a fairly good basic knowledge of REDCap. To come up to speed, consider taking our [Data Capture and Surveys with REDCap](https://intersect.org.au/training/course/redcap101/) workshop. **For more information, please click [here](https://intersect.org.au/training/course/redcap201).** 2022-10-04 10:00:00 UTC 2022-10-04 13:00:00 UTC Intersect Australia Australia Australia LTU training@intersect.org.au [] [] [] host_institution []
  • Data Entry and Processing in SPSS at UC Online

    4 - 5 October 2022

    Data Entry and Processing in SPSS at UC Online https://dresa.org.au/events/data-entry-and-processing-in-spss-at-uc-online-2ad49709-9422-4151-b2b5-47e7e0ba5976 This hands-on training is designed to familiarize you with the interface and basic data processing functionalities in SPSS. We will examine several “must know” syntax commands that can help streamline data entry and processing. In addition, we will explore how to obtain descriptive statistics in SPSS and perform visualization. This workshop is recommended for researchers and postgraduate students who are new to SPSS or Statistics; or those simply looking for a refresher course before taking a deep dive into using SPSS, either to apply it to their research or to add it to their arsenal of eResearch skills. #### You'll learn: - Navigate the SPSS working environment - Prepare data files and define variables - Enter data in SPSS and Import data from Excel - Perform data screening - Compose SPSS Syntax for data processing - Obtain descriptive statistics, create graphs & assess normality - Manipulate and transform variables #### Prerequisites: In order to participate, attendees must have a licensed copy of SPSS installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. **For more information, please click [here](https://intersect.org.au/training/course/spss101).** 2022-10-04 13:30:00 UTC 2022-10-05 16:30:00 UTC Intersect Australia Australia Australia UC training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using R: Introduction & Linear Regression at UniSA Online

    6 - 7 October 2022

    Introduction to Machine Learning using R: Introduction & Linear Regression at UniSA Online https://dresa.org.au/events/introduction-to-machine-learning-using-r-introduction-linear-regression-at-unisa-online Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the R programming language and its scientific computing packages. #### You'll learn: - Understand the difference between supervised and unsupervised Machine Learning. - Understand the fundamentals of Machine Learning. - Comprehensive introduction to Machine Learning models and techniques such as Linear Regression and Model Training. - Understand the Machine Learning modelling workflows. - Use R and and its relevant packages to process real datasets, train and apply Machine Learning models #### Prerequisites: - Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation in R](https://intersect.org.au/training/course/r201/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/)needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of R syntax and basic programming concepts and familiarity with dplyr, tidyr and ggplot2 packages. - Maths knowledge is not required. There are only a few Math formula that you are going to see in this course, however references to Mathematics required for learning about Machine Learning will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using R workshops: - Introduction to Machine Learning using R: Introduction & Linear Regression - Introduction to Machine Learning using R: Classification - Introduction to Machine Learning using R: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/r205).** 2022-10-06 09:30:00 UTC 2022-10-07 12:30:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Excel for Researchers at Deakin Online

    6 - 7 October 2022

    Excel for Researchers at Deakin Online https://dresa.org.au/events/excel-for-researchers-at-deakin-online-bab9bfd3-9f50-4b1a-bd93-612966314ddd Data rarely comes in the form you require. Often it is messy. Sometimes it is incomplete. And sometimes there's too much of it. Frequently, it has errors. We'll use one of the most widespread data wrangling tools, Microsoft Excel, to import, sort, filter, copy, protect, transform, summarise, merge, and visualise research data. While aimed at novice Excel users, most attendees will walk away with new tricks to work more efficiently with their research data. #### You'll learn: - 'Clean up’ messy research data - Organise, format and name your data - Interpret your data (SORTING, FILTERING, CONDITIONAL FORMATTING) - Perform calculations on your data using functions (MAX, MIN, AVERAGE) - Extract significant findings from your data (PIVOT TABLE, VLOOKUP) - Manipulate your data (convert data format, work with DATES and TIMES) - Create graphs and charts to visualise your data (CHARTS) - Handy tips to speed up your work #### Prerequisites: In order to participate, attendees must have a licensed copy of Microsoft Excel installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. **For more information, please click [here](https://intersect.org.au/training/course/excel101).** 2022-10-06 13:00:00 UTC 2022-10-07 16:00:00 UTC Intersect Australia Australia Australia Deakin training@intersect.org.au [] [] [] host_institution []
  • Getting started with NVivo for Windows at UTS Online

    6 October 2022

    Getting started with NVivo for Windows at UTS Online https://dresa.org.au/events/getting-started-with-nvivo-for-windows-at-uts-online-b28faf2f-9fd5-4807-b81e-314757189cfc Does your research see you working through unstructured and non-numerical data? With the ability to collect, store and analyse different data types all in the one location makes, it's easy to see why NVivo is becoming the tool of choice for many researchers. NVivo allows researchers to simply organise and manage data from a variety of sources including surveys, interviews, articles, video, email, social media and web content, PDFs and images. Coding your data allows you to discover trends and compares themes as they emerge across different sources and data types. Using NVivo memos and visualisations combined with the ability to integrate with popular bibliographic tools you can get your research ready for publication sooner. #### You'll learn: - Create and organise a qualitative research project in NVivo - Import a range of data sources using NVivo's integrated tools - Code and classify your data - Format your data to take advantage of NVivo’s auto-coding ability - Use NVivo to discover new themes and trends in research - Visualise relationships and trends in your data #### Prerequisites: In order to participate, attendees must have a licensed copy of NVivo installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. This course is taught using NVivo 12 Pro for Windows and is not suitable for NVivo for Mac users. **For more information, please click [here](https://intersect.org.au/training/course/nvivo101).** 2022-10-06 13:30:00 UTC 2022-10-06 16:30:00 UTC Intersect Australia Australia Australia UTS training@intersect.org.au [] [] [] host_institution []
  • Version Control with Git at UC Online

    6 October 2022

    Version Control with Git at UC Online https://dresa.org.au/events/version-control-with-git-at-uc-online Have you mistakenly overwritten programs or data and want to learn techniques to avoid repeating the loss? Version control systems are one of the most powerful tools available for avoiding data loss and enabling reproducible research. While the learning curve can be steep, our trainers are there to answer all your questions while you gain hands on experience in using Git, one of the most popular version control systems available. Join us for this workshop where we cover the fundamentals of version control using the researcher-focused training modules from the highly regarded Software Carpentry Foundation. #### You'll learn: - keep versions of data, scripts, and other files - examine commit logs to find which files were changed when - restore earlier versions of files - compare changes between versions of a file - push your versioned files to a remote location, for backup and to facilitate collaboration #### Prerequisites: The course has no prerequisites. **For more information, please click [here](https://intersect.org.au/training/course/git101).** 2022-10-06 13:30:00 UTC 2022-10-06 16:30:00 UTC Intersect Australia Australia Australia UC training@intersect.org.au [] [] [] host_institution []
  • Getting started with NVivo for Windows at Western Sydney: Online

    7 October 2022

    Getting started with NVivo for Windows at Western Sydney: Online https://dresa.org.au/events/getting-started-with-nvivo-for-windows-at-western-sydney-online-553d211b-e146-4d09-9cd0-e8deed4614fb Does your research see you working through unstructured and non-numerical data? With the ability to collect, store and analyse different data types all in the one location makes, it's easy to see why NVivo is becoming the tool of choice for many researchers. NVivo allows researchers to simply organise and manage data from a variety of sources including surveys, interviews, articles, video, email, social media and web content, PDFs and images. Coding your data allows you to discover trends and compares themes as they emerge across different sources and data types. Using NVivo memos and visualisations combined with the ability to integrate with popular bibliographic tools you can get your research ready for publication sooner. #### You'll learn: - Create and organise a qualitative research project in NVivo - Import a range of data sources using NVivo's integrated tools - Code and classify your data - Format your data to take advantage of NVivo’s auto-coding ability - Use NVivo to discover new themes and trends in research - Visualise relationships and trends in your data #### Prerequisites: In order to participate, attendees must have a licensed copy of NVivo installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. This course is taught using NVivo 12 Pro for Windows and is not suitable for NVivo for Mac users. **For more information, please click [here](https://intersect.org.au/training/course/nvivo101).** 2022-10-07 09:30:00 UTC 2022-10-07 12:30:00 UTC Intersect Australia Australia Australia WSU training@intersect.org.au [] [] [] host_institution []
  • Getting started with NVivo for Windows at UTS Online

    7 October 2022

    Getting started with NVivo for Windows at UTS Online https://dresa.org.au/events/getting-started-with-nvivo-for-windows-at-uts-online-3b35237e-2329-460c-b21d-edb3e4005185 Does your research see you working through unstructured and non-numerical data? With the ability to collect, store and analyse different data types all in the one location makes, it's easy to see why NVivo is becoming the tool of choice for many researchers. NVivo allows researchers to simply organise and manage data from a variety of sources including surveys, interviews, articles, video, email, social media and web content, PDFs and images. Coding your data allows you to discover trends and compares themes as they emerge across different sources and data types. Using NVivo memos and visualisations combined with the ability to integrate with popular bibliographic tools you can get your research ready for publication sooner. #### You'll learn: - Create and organise a qualitative research project in NVivo - Import a range of data sources using NVivo's integrated tools - Code and classify your data - Format your data to take advantage of NVivo’s auto-coding ability - Use NVivo to discover new themes and trends in research - Visualise relationships and trends in your data #### Prerequisites: In order to participate, attendees must have a licensed copy of NVivo installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. This course is taught using NVivo 12 Pro for Windows and is not suitable for NVivo for Mac users. **For more information, please click [here](https://intersect.org.au/training/course/nvivo101).** 2022-10-07 13:30:00 UTC 2022-10-07 16:30:00 UTC Intersect Australia Australia Australia UTS training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: SVM & Unsupervised Learning at UOA Online

    11 October 2022

    Introduction to Machine Learning using Python: SVM & Unsupervised Learning at UOA Online https://dresa.org.au/events/introduction-to-machine-learning-using-python-svm-unsupervised-learning-at-uoa-online Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Support Vector Machine, K-Nearest Neighbor and Dimensionality Reduction. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax, basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries, and basic understanding of Machine Learning and Model Training. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python207).** 2022-10-11 09:30:00 UTC 2022-10-11 12:30:00 UTC Intersect Australia Australia Australia UOA training@intersect.org.au [] [] [] host_institution []
  • Excel for Researchers at UNE Online

    11 October 2022

    Excel for Researchers at UNE Online https://dresa.org.au/events/excel-for-researchers-at-une-online Data rarely comes in the form you require. Often it is messy. Sometimes it is incomplete. And sometimes there's too much of it. Frequently, it has errors. We'll use one of the most widespread data wrangling tools, Microsoft Excel, to import, sort, filter, copy, protect, transform, summarise, merge, and visualise research data. While aimed at novice Excel users, most attendees will walk away with new tricks to work more efficiently with their research data. #### You'll learn: - 'Clean up’ messy research data - Organise, format and name your data - Interpret your data (SORTING, FILTERING, CONDITIONAL FORMATTING) - Perform calculations on your data using functions (MAX, MIN, AVERAGE) - Extract significant findings from your data (PIVOT TABLE, VLOOKUP) - Manipulate your data (convert data format, work with DATES and TIMES) - Create graphs and charts to visualise your data (CHARTS) - Handy tips to speed up your work #### Prerequisites: In order to participate, attendees must have a licensed copy of Microsoft Excel installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. **For more information, please click [here](https://intersect.org.au/training/course/excel101).** 2022-10-11 09:30:00 UTC 2022-10-11 12:30:00 UTC Intersect Australia Australia Australia UNE training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: Introduction & Linear Regression at UniSA Online

    11 - 12 October 2022

    Introduction to Machine Learning using Python: Introduction & Linear Regression at UniSA Online https://dresa.org.au/events/introduction-to-machine-learning-using-python-introduction-linear-regression-at-unisa-online-fbdbdb9f-7f87-4cef-94dd-ed271edf03b7 Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Understand the difference between supervised and unsupervised Machine Learning. - Understand the fundamentals of Machine Learning. - Comprehensive introduction to Machine Learning models and techniques such as Linear Regression and Model Training. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax and basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python205).** 2022-10-11 13:00:00 UTC 2022-10-12 16:00:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Excel for Researchers at UNE Online

    12 October 2022

    Excel for Researchers at UNE Online https://dresa.org.au/events/excel-for-researchers-at-une-online-c1d0c270-e1dd-4b1a-b283-8a4a1dadbfd0 Data rarely comes in the form you require. Often it is messy. Sometimes it is incomplete. And sometimes there's too much of it. Frequently, it has errors. We'll use one of the most widespread data wrangling tools, Microsoft Excel, to import, sort, filter, copy, protect, transform, summarise, merge, and visualise research data. While aimed at novice Excel users, most attendees will walk away with new tricks to work more efficiently with their research data. #### You'll learn: - 'Clean up’ messy research data - Organise, format and name your data - Interpret your data (SORTING, FILTERING, CONDITIONAL FORMATTING) - Perform calculations on your data using functions (MAX, MIN, AVERAGE) - Extract significant findings from your data (PIVOT TABLE, VLOOKUP) - Manipulate your data (convert data format, work with DATES and TIMES) - Create graphs and charts to visualise your data (CHARTS) - Handy tips to speed up your work #### Prerequisites: In order to participate, attendees must have a licensed copy of Microsoft Excel installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. **For more information, please click [here](https://intersect.org.au/training/course/excel101).** 2022-10-12 09:30:00 UTC 2022-10-12 12:30:00 UTC Intersect Australia Australia Australia UNE training@intersect.org.au [] [] [] host_institution []
  • Collecting Web Data at UC Online

    12 - 13 October 2022

    Collecting Web Data at UC Online https://dresa.org.au/events/collecting-web-data-at-uc-online-1abf7b55-140d-4eea-a38c-22d682f9ebc5 Web scraping is a technique for extracting information from websites. This can be done manually but it is usually faster, more efficient and less error-prone if it can be automated. Web scraping allows you to convert non-tabular or poorly structured data into a usable, structured format, such as a .csv file or spreadsheet. But scraping is about more than just acquiring data: it can help you track changes to data online, and help you archive data. In short, it's a skill worth learning. So join us for this web scraping workshop to learn web scraping, using the researcher-focused training modules from the highly regarded Software Carpentry Foundation. #### You'll learn: - The concept of structured data - The use of XPath queries on HTML document - How to scrape data using browser extensions - How to scrape using Python and Scrapy - How to automate the scraping of multiple web pages #### Prerequisites: A good knowledge of the basic concepts and techniques in Python. Consider taking our [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Python for Research](https://intersect.org.au/training/course/python110/) courses to come up to speed beforehand. **For more information, please click [here](https://intersect.org.au/training/course/webdata201).** 2022-10-12 09:30:00 UTC 2022-10-13 16:30:00 UTC Intersect Australia Australia Australia UC training@intersect.org.au [] [] [] host_institution []
  • Excel for Researchers at LTU Online

    12 - 13 October 2022

    Excel for Researchers at LTU Online https://dresa.org.au/events/excel-for-researchers-at-ltu-online-2a214127-b203-4bfb-940d-09b19a3b34b6 Data rarely comes in the form you require. Often it is messy. Sometimes it is incomplete. And sometimes there's too much of it. Frequently, it has errors. We'll use one of the most widespread data wrangling tools, Microsoft Excel, to import, sort, filter, copy, protect, transform, summarise, merge, and visualise research data. While aimed at novice Excel users, most attendees will walk away with new tricks to work more efficiently with their research data. #### You'll learn: - 'Clean up’ messy research data - Organise, format and name your data - Interpret your data (SORTING, FILTERING, CONDITIONAL FORMATTING) - Perform calculations on your data using functions (MAX, MIN, AVERAGE) - Extract significant findings from your data (PIVOT TABLE, VLOOKUP) - Manipulate your data (convert data format, work with DATES and TIMES) - Create graphs and charts to visualise your data (CHARTS) - Handy tips to speed up your work #### Prerequisites: In order to participate, attendees must have a licensed copy of Microsoft Excel installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. **For more information, please click [here](https://intersect.org.au/training/course/excel101).** 2022-10-12 09:30:00 UTC 2022-10-13 12:30:00 UTC Intersect Australia Australia Australia LTU training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using R: Classification at UniSA Online

    13 - 14 October 2022

    Introduction to Machine Learning using R: Classification at UniSA Online https://dresa.org.au/events/introduction-to-machine-learning-using-r-classification-at-unisa-online Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the R programming language and its scientific computing packages. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Logistic Regression, Decision Trees and Ensemble Learning. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use R and its relevant packages to process real datasets, train and apply Machine Learning models #### Prerequisites: - Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation in R](https://intersect.org.au/training/course/r201/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/)needed to attend this course. If you already have experience with programming, please check the topics covered in courses above and [Introduction to ML using R: Introduction & Linear Regression](https://intersect.org.au/training/course/r205/) to ensure that you are familiar with the knowledge needed for this course, such as good understanding of R syntax and basic programming concepts, familiarity with dplyr, tidyr and ggplot2 packages, and basic understanding of Machine Learning and Model Training. - Maths knowledge is not required. There are only a few Math formula that you are going to see in this course, however references to Mathematics required for learning about Machine Learning will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using R workshops: - Introduction to Machine Learning using R: Introduction & Linear Regression - Introduction to Machine Learning using R: Classification - Introduction to Machine Learning using R: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/r206).** 2022-10-13 09:30:00 UTC 2022-10-14 09:30:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: SVM & Unsupervised Learning at UOA Online

    13 October 2022

    Introduction to Machine Learning using Python: SVM & Unsupervised Learning at UOA Online https://dresa.org.au/events/introduction-to-machine-learning-using-python-svm-unsupervised-learning-at-uoa-online-c4738fe2-2523-4a1f-baae-cdfb09e36ac2 Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Support Vector Machine, K-Nearest Neighbor and Dimensionality Reduction. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax, basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries, and basic understanding of Machine Learning and Model Training. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python207).** 2022-10-13 09:30:00 UTC 2022-10-13 12:30:00 UTC Intersect Australia Australia Australia UOA training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: Classification at UniSA Online

    18 - 19 October 2022

    Introduction to Machine Learning using Python: Classification at UniSA Online https://dresa.org.au/events/introduction-to-machine-learning-using-python-classification-at-unisa-online-27cb5a67-71b5-46bd-beaa-a132c09400db Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Logistic Regression, Decision Trees and Ensemble Learning. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax, basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries, and basic understanding of Machine Learning and Model Training. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python206).** 2022-10-18 09:30:00 UTC 2022-10-19 12:30:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Learn to Program: R at LTU Online

    25 - 26 October 2022

    Learn to Program: R at LTU Online https://dresa.org.au/events/learn-to-program-r-at-ltu-online-beb66166-f464-46cc-b6a2-c2e9d886b32f R is quickly gaining popularity as a programming language of choice for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio development environment and the Shiny web application framework. But getting started with R can be challenging, particularly if you've never programmed before. That's where this introductory course comes in. We teach using RStudio, which allows program code, results, visualisations and documentation to be blended seamlessly. Join us for a live coding workshop where we write programs that produce results, using the researcher-focused training modules from the highly regarded Software Carpentry Foundation. #### You'll learn: - Introduction to the RStudio interface for programming - Basic syntax and data types in R - How to load external data into R - Creating functions (FUNCTIONS) - Repeating actions and analysing multiple data sets (LOOPS) - Making choices (IF STATEMENTS - CONDITIONALS) - Ways to visualise data in R #### Prerequisites: No prior experience with programming needed to attend this course. We strongly recommend attending the Start Coding without Hesitation: Programming Languages Showdown and Thinking like a computer: The Fundamentals of Programming webinars. Recordings of previously delivered webinars can be found [here](https://intersect.org.au/training/webinars/). **For more information, please click [here](https://intersect.org.au/training/course/r101).** 2022-10-25 09:30:00 UTC 2022-10-26 12:30:00 UTC Intersect Australia Australia Australia LTU training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using R: Introduction & Linear Regression at Western Sydney: Online

    25 - 26 October 2022

    Introduction to Machine Learning using R: Introduction & Linear Regression at Western Sydney: Online https://dresa.org.au/events/introduction-to-machine-learning-using-r-introduction-linear-regression-at-western-sydney-online Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the R programming language and its scientific computing packages. #### You'll learn: - Understand the difference between supervised and unsupervised Machine Learning. - Understand the fundamentals of Machine Learning. - Comprehensive introduction to Machine Learning models and techniques such as Linear Regression and Model Training. - Understand the Machine Learning modelling workflows. - Use R and and its relevant packages to process real datasets, train and apply Machine Learning models #### Prerequisites: - Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation in R](https://intersect.org.au/training/course/r201/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/)needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of R syntax and basic programming concepts and familiarity with dplyr, tidyr and ggplot2 packages. - Maths knowledge is not required. There are only a few Math formula that you are going to see in this course, however references to Mathematics required for learning about Machine Learning will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using R workshops: - Introduction to Machine Learning using R: Introduction & Linear Regression - Introduction to Machine Learning using R: Classification - Introduction to Machine Learning using R: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/r205).** 2022-10-25 09:30:00 UTC 2022-10-26 12:30:00 UTC Intersect Australia Australia Australia WSU training@intersect.org.au [] [] [] host_institution []

Note, this map only displays events that have geolocation information in DReSA.
For the complete list of events in DReSA, click the grid tab.