Register event
4 events found

Content provider: Intersect Australia 

and

Host institutions: UniSA 

  • Learn to Program: Python at UniSA Online

    16 October 2024

    Learn to Program: Python at UniSA Online https://dresa.org.au/events/learn-to-program-python-at-unisa-online-788ada3b-4861-4359-979b-4f33d3542ba6 Python has deservedly become a popular language for scientific computing. It has all the friendly features and conveniences you'd expect of a modern programming language, and also a rich set of libraries for working with data. We teach using Jupyter notebooks, which allow program code, results, visualisations and documentation to be blended seamlessly. Perfect for sharing insights with others while producing reproducible research. Join us for this live coding workshop where we write programs that produce results, using the researcher-focused training modules from the highly regarded Software Carpentry Foundation. #### You'll learn: - Introduction to the JupyterLab interface for programming - Basic syntax and data types in Python - How to load external data into Python - Creating functions (FUNCTIONS) - Repeating actions and analysing multiple data sets (LOOPS) - Making choices (IF STATEMENTS - CONDITIONALS) - Ways to visualise data in Python #### Prerequisites: No prior experience with programming is needed to attend this course. We strongly recommend attending the Start Coding without Hesitation: Programming Languages Showdown and Thinking like a computer: The Fundamentals of Programming webinars. Recordings of previously delivered webinars can be found [here](https://intersect.org.au/training/webinars/). **For more information, please click [here](https://intersect.org.au/training/course/python101).** 2024-10-16 13:00:00 UTC 2024-10-16 16:00:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: Introduction & Linear Regression at UniSA Online

    23 - 24 October 2024

    Introduction to Machine Learning using Python: Introduction & Linear Regression at UniSA Online https://dresa.org.au/events/introduction-to-machine-learning-using-python-introduction-linear-regression-at-unisa-online-283b14fc-5891-4cbc-8119-9fe5c73cf7c6 Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Understand the difference between supervised and unsupervised Machine Learning. - Understand the fundamentals of Machine Learning. - Comprehensive introduction to Machine Learning models and techniques such as Linear Regression and Model Training. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax and basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python205).** 2024-10-23 13:00:00 UTC 2024-10-24 16:00:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: Classification at UniSA Online

    30 - 31 October 2024

    Introduction to Machine Learning using Python: Classification at UniSA Online https://dresa.org.au/events/introduction-to-machine-learning-using-python-classification-at-unisa-online-bd6cac30-2ac5-4b9f-8ba6-7fd9b69e0bab Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Logistic Regression, Decision Trees and Ensemble Learning. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax, basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries, and basic understanding of Machine Learning and Model Training. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python206).** 2024-10-30 13:00:00 UTC 2024-10-31 16:00:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: SVM & Unsupervised Learning at UniSA Online

    7 November 2024

    Introduction to Machine Learning using Python: SVM & Unsupervised Learning at UniSA Online https://dresa.org.au/events/introduction-to-machine-learning-using-python-svm-unsupervised-learning-at-unisa-online Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Support Vector Machine, K-Nearest Neighbor and Dimensionality Reduction. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax, basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries, and basic understanding of Machine Learning and Model Training. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python207).** 2024-11-07 13:00:00 UTC 2024-11-07 16:00:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Learn to Program: Python at UniSA Online

    16 October 2024

    Learn to Program: Python at UniSA Online https://dresa.org.au/events/learn-to-program-python-at-unisa-online-788ada3b-4861-4359-979b-4f33d3542ba6 Python has deservedly become a popular language for scientific computing. It has all the friendly features and conveniences you'd expect of a modern programming language, and also a rich set of libraries for working with data. We teach using Jupyter notebooks, which allow program code, results, visualisations and documentation to be blended seamlessly. Perfect for sharing insights with others while producing reproducible research. Join us for this live coding workshop where we write programs that produce results, using the researcher-focused training modules from the highly regarded Software Carpentry Foundation. #### You'll learn: - Introduction to the JupyterLab interface for programming - Basic syntax and data types in Python - How to load external data into Python - Creating functions (FUNCTIONS) - Repeating actions and analysing multiple data sets (LOOPS) - Making choices (IF STATEMENTS - CONDITIONALS) - Ways to visualise data in Python #### Prerequisites: No prior experience with programming is needed to attend this course. We strongly recommend attending the Start Coding without Hesitation: Programming Languages Showdown and Thinking like a computer: The Fundamentals of Programming webinars. Recordings of previously delivered webinars can be found [here](https://intersect.org.au/training/webinars/). **For more information, please click [here](https://intersect.org.au/training/course/python101).** 2024-10-16 13:00:00 UTC 2024-10-16 16:00:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: Introduction & Linear Regression at UniSA Online

    23 - 24 October 2024

    Introduction to Machine Learning using Python: Introduction & Linear Regression at UniSA Online https://dresa.org.au/events/introduction-to-machine-learning-using-python-introduction-linear-regression-at-unisa-online-283b14fc-5891-4cbc-8119-9fe5c73cf7c6 Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Understand the difference between supervised and unsupervised Machine Learning. - Understand the fundamentals of Machine Learning. - Comprehensive introduction to Machine Learning models and techniques such as Linear Regression and Model Training. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax and basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python205).** 2024-10-23 13:00:00 UTC 2024-10-24 16:00:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: Classification at UniSA Online

    30 - 31 October 2024

    Introduction to Machine Learning using Python: Classification at UniSA Online https://dresa.org.au/events/introduction-to-machine-learning-using-python-classification-at-unisa-online-bd6cac30-2ac5-4b9f-8ba6-7fd9b69e0bab Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Logistic Regression, Decision Trees and Ensemble Learning. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax, basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries, and basic understanding of Machine Learning and Model Training. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python206).** 2024-10-30 13:00:00 UTC 2024-10-31 16:00:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: SVM & Unsupervised Learning at UniSA Online

    7 November 2024

    Introduction to Machine Learning using Python: SVM & Unsupervised Learning at UniSA Online https://dresa.org.au/events/introduction-to-machine-learning-using-python-svm-unsupervised-learning-at-unisa-online Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Support Vector Machine, K-Nearest Neighbor and Dimensionality Reduction. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax, basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries, and basic understanding of Machine Learning and Model Training. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python207).** 2024-11-07 13:00:00 UTC 2024-11-07 16:00:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []

Note, this map only displays events that have geolocation information in DReSA.
For the complete list of events in DReSA, click the grid tab.